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The Laboratory for Plasma Soft X-Ray Light

Sources and Diagnostics (1)

» Development of ultrafast coherent (laser-based) spectroscopic diagnostics of plasmas and high speed flows

* Development and characterization of plasma-based soft x-ray extreme ultraviolet lithography light sources
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Low Temperature Plasmas and Applications
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Current Grand Challenges of Engineering
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LT Plasmas Impact our Every-day Life

01 —Plasma TV

02 — Plasma-coated jet turbine blades

03 — Plasma-manufactured LEDs in panel
04 — Diamond-like plasma CVD eyeglass coating
05 — Plasmaion-implanted artificial hip

06 — Plasma laser-cut cloth

07 — Plasma HID headlamps

08 — Plasma-produced H, in fuel cell

09 — Plasma-aided combustion

10 — Plasma muffler

11 — Plasma ozone water purification

12 — Plasma-deposited LCD screen

13 — Plasma-deposited silicon for solar cells

14 — Plasma-processed microelectronic

15 — Plasma-sterilization in pharmaceutical production
16 — Plasma-treated polymers

17 — Plasma-treated textiles

18 — Plasma-treated heart stent

19 — Plasma-deposited diffusion barriers for containers

20 — Plasma-sputtered window glazing

Plasma Science: Advancing Knowledge in the National Interest, National Research Council (US, 2007)

21 — Comiact fluorescent ilasma Iami



The Semiconductor Success Story
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Wou et al, J. Appl. Phys. 108, 051101 (2010)



Plasmas and Applications: Thermal VS Non-Thermal
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Generation of LT Plasmas and Basic Properties




Gas Discharges as Low Temperature Plasmas

We use electric fields instead of heat! 5,"30““3 ® ©®

Electrically driven

Different excitation sources can be
employed: DC, AC, RF, Microwave,
nanosecond pulsed,...

The source of energy is the E-field
High E-fields lead to ionizing collisions

Charged particles collisions with
neutrals cause the main energy transfer
from the electric field energy to the gas

When the energy transfer of electrons to
neutral particles is not very fast, the
energy of electrons (=T,) can be
significant larger than the neutral
particles energy (=T,): Ty << T,
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Overview of Atmospheric Pressure LT Plasmas

(a) DBD (b) Plasma jet (c) DC corona (d) Transient streamer
(a) DBD (b) Plasma jet c) DC corona (d) Transient streamer
: Llem,
e e
i ©) E
i €
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(e) ns-pulsed discharge (f) ccp (g) MHCD {h) Microplasma array
* 31d electrode (e) ns-pulsed discharge f) CCP (g) MHCD (h) Microplasma array

(i) Microwave microstrip resonator (i) Surfatron plasma (k) Gliding arc
Corona Glow Spark

(i) Microwave microstrip resonator (j) Surfatron plasma (k) Gliding arc

mmm Electrode ZzZ |nsulator Gas Plasma
(I) High voltage @ AC Power Supply @ DC Power Supply @ Microwave Power Supply
power source @ RF Power Supply @ Pulsed Power Supply ] Microwave resonator

Bruggeman et al, Plasma Sources Sci. Technol. 26 (2017) 123002




LT Plasmas are Rich of Physics and Chemistry

Span over 12 orders of magnitude for n,

Often low ionization fraction (degree): % <1%

lons and neutrals temperatures are near room
1
temperature: T;~ T, ~ 0 eV

Electron temperature can reach several eV: T, ~ 1-10

eV
1 eV = 11,606K

Highly non-equilibrium

Highly reactive plasmas can be generated near room
gas temperatures

In presence of molecular gases, dissociation can
occur generating a very rich and complex electrons-

driven chemistry: LT plasma = chemical processor
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Plasma Interactions with Surfaces: Formation of Sheaths

Plasma are surrounded by Sheaths! l Electrode

 The sheath is the boundary layer between a +
plasma and a solid surface (electrodes, substrate, v C
container walls, ...)

It acts to balance electron and ion currents lost
from a plasma

« Sheaths are characterized by a strong E-field, =
low electron density

* Sheaths form as ions are accelerated into
surfaces

* Sheaths have an important role for applications
relevant to: removal of surface material and ion
implantation

sheath




Sheaths size depends on the plasma density (pressure)

The Debye length is the characteristic

length scale of a plasma s D A é |
; ,.”-j. I J - V
- It’s the distance scale over which significant 71 : : : P
charge densities can spontaneously exist A | I I
“
Using Poisson’s equation: % : : |
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Comparison between Hot and Cold Plasmas

EFDA JET: Joint European Torus

_ JET Tokamak Atmospheric pressure plasmas Courtesy of

Power ~16 MW 102-10 W Peter
Bruggeman,

Volume ~ 100 m?3 ~ 108 m?3 (10 mm3) University of
Power density 108 W m-3 108-10° Wm?-3 Minnesota
lonization degree FULL 105-102
Temperature T.=Ty=108K T, =103-104K

T,=300 — 3000 K
Pulse duration ~1s ~10nsupto DC



Energy Partition and Transfer in LT Plasmas




Collisions and Elementary Reactions: Atomic Gas

We use cross sections to quantify the
probability that a process may occur

Elastic collisions: e+ Ar — Ar + e-

Electronic excitation collisions: e+ Ar — Ar*
+ e — Ar + e + photons

lonizing collisions: e+ Ar - Arf +e +e"

Cross sections from different databases are
compiled on the LXCAT website:
https://us.Ixcat.net/

Databases: IST-Lisbon, Morgan, Phelps,
Itikawa, Triniti, Hayashi, ...

leV~16%x10%°J

cross section [10%°m?
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Energy Partition in a Molecular Gas: Air

Where does the energy from the electrons go?

* E/N, electric field divided by total number
density

1 Td (Townsend) = 1017 V.cm?

* The rates of electron impact processes depend
exponentially on E/N

» At low E/N values (<10 Td): Energy coupled
preferentially to vibrational excitation of O,

 For 10 Td < E/N <100 Td: Energy coupled
preferentially to vibrational excitation of N,

* For E/N > 100 Td: Energy coupled into electronic
excitation of N,, O, dissociation and ionization

Yuri Raizer: Gas Discharge Physics

N, (el)

0.14

0.01 -

Energy loss fraction

10 100 1000
E/N [Td]
High E/N values result in high reactivity and rapid electron-

driven processes. This is for instance achieved using
nanosecond pulsed discharges



Energy Transfer in an Elastic Collision (1)

» Expressing energy and momentum balances
yields:

W, =final energy for particle m,
W= initial energy for particle m;

WL 4‘m1m2 2 2m1 m, - V2 vl
— = = cos“0, = 1 — cos6 2
W T Gy b mg)2 0% T Gy gz 7 C0%0am)
0, = E _ Ocm CM = Center of Mass (given)
272 2

« What is now the average energy transfer per collision?



Energy Transfer in an Elastic Collision (2)

Fraction of energy transferred in one collision:

» For electron — neutral collision (hard sphere model)

2mq{m, N 2m,

~ ~ 107*
(m1 +m2)2 M

Electrons transfer little energy in elastic collisions with neutrals: T, >> T,

* For ion — neutral collision (with same mass)

2m1m2 1

(my + m,)? "2

Equilibration rates depend on the mass ratios

lons neutral collisions transfer significant energy in elastic collisions: T;,, ~ T

ion g



What does Temperature mean?

Temperature is actually related to the mean kinetic energy!

Concept of thermal equilibrium in statistical mechanics: Maxwell-Boltzmann
distribution function of the particle energy

A
E E
. f(e) =2 3 exp(—ﬁJ
: Jr(kTe) e
! p 3
g(€) | (f)zjef(g)dE:—kTe

| 2
| . 0
: :  lonization is caused by high energy
| ]I electrons in the tail of the distribution!
d - >

Tefz EUISS g;z £

Particle energy o

* An electron temperature (T,) of 1 eV therefore means that the plasma has an electron energy
distribution function (EEDF) with a mean energy of 3/2 eV




Rate Coefficients

Electron-Argon Rate Coefficients
102¢ ety S e

* Rate coefficient is the average of the
cross section o (Vy) of the process

10-13 [
: over the Maxwellian distribution

10 ;

Excitation * K(Te) = <0 Vr>yaxwellian

K 3 -15.
(m>/s) 10 « Vg = relative velocity of colliding

; particles
107}
 The knowledge of rate coefficients is
indispensable for establishing
Ionization 3 accurate collisional-radiative models
] of plasmas

107

YTy T=TTTT

10-18. 3 PR R T |

10" 10° 10' 10
Te (V)




Deviation from Maxwell-Boltzmann Distribution

The EEDF is not necessarily Bolsig+: Boltzmann equation solver

- | :
Maxwell-Boltzmann: e s v e R =

10-! | \\‘ 2
1072 4 N F

» It depends on the ionization degree 107 4 i L. =™

. 107 4 \\‘ N_/n_= 10"

« Assuming M-B when it is not can hugely 10°° | . L R2
impact rates with high threshold energy 105 4 R |
1077 4 . MB -

» Plasma codes have a Boltzmann solver 108 | M L. —®
(EEDF can depend on gas composition) 10-° 3 |
10° -~




LT Plasmas Modeling and Timescales

SLLLL IULRLLLL BRLELRLLLL IR AL ILRLLALLL INRRLRLLLL I LLL IR LLLL UL UL AL
e Srstat v |_Sroseres | o f [Surface Chemist
lonizati Diffusion and convection /{;; ; . ?
(;l;d gaosn |_ sion a convectiol I Er F|U|d _;
breakdown Heating a0 1 0-2 C Transport b
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v Mass transfer 3 F Transport
lonic reactions E 1 0-8 ;_ 3
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« About 12 orders of magnitude in timescales ()

« Integrating time step (stability, accuracy): At Mark J. Kushner, University of Michigan

« Dynamic timescale (to resolve the evolution of plasma
phenomena): AT

Bruggeman et al, Plasma Sources Sci. Technol. 26 (2017) 123002



Case Study #1: Plasma-Assisted Ignition




C,H, Ignition below Autoignition Temperature

Number of Pulses Pulse #40 Pulse #200 Pulse #400

0 200 400 600 800 1000

Flarﬂe, t=13ms . Flame, t=13.4ms

o . _ Pulse #4380
Stoichiometric C,H,-air ,

P=84torr, T=200°C D €

Flame, t=14ms Flame, t=14.5ms Flame, t=15ms
v=40kHz, 12ms burst

Flame, t=15.2ms Flame, t=15.5ms Flame, t=16ms

v
P s

Flame, t=16.5ms Flame, t=17ms

Flame, t=18ms

10 15
Time, msec

25
OH emission from plasma and flame

. Ignition induced by radicals generated in the plasma (primarily O and H atoms)
. Ignition occurs at temperature = 200 K below autoignition
. Ignition begins near edges of the plasma (higher energy loading) Yin et al, [EEE Trans Plasma Sci. 2011

. Flame propagates to the center of the plasma



Case Study #2: Inactivation of Viruses and Bacteria




Viral inactivation
(log,, TCID,/0.1 ml of eluent)

RONS from Air Plasmas for Virus Inactivation

RONS = Reactive Oxygen Nitrogen Species
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FCV = Feline CaliciVirus (surrogate of human norovirus = stomach flu)

Strong correlations between generation of gas

phase N,Og and inactivation

Moldgy et al, J. Phys. D: Appl. Phys. 53 (2020) 434004




Case Study #3: Polymer Etching




Etching from O, H, OH Produced by a RF Plasma Jet

TABLE VI. Obtained etching probability () for different surface loss coefficients (f).
] Feed gas
. Etching of polystyrene, PMMA ‘ Species B ¥
(poly methyl methacrylate) and . ) . s
PVA (poly vinyl alcohol) v o 10_3 (L9£0.1)x 10_5
- . 10 (3.2+02) x 10
-2 —4
- Ar+1% O,, Ar+1% air, Ar +1% o o (A= n 1)
. <00 X
H,O plasma jets 1073 <1.8x107°
: ‘OH 107° 2.8+0.1)x 107
. Correlation between O flux at 102 (;(7;0 +0 02_];() %1073
the surface and polymer 107" _-(3:.5 + 0:1) x 1072

etching rate

X direction
. Etching probability of
polystyrene by OH at least one
order of magnitude greater than
etching of polystyrene by O
radicals

Luan et al, J. Phys. D: Appl. Phys. 50 (2017) 03LT02

. . . Kondeti et al, J. Vac. Sci. Technol. A 38(3)
Using plasma to modify surface properties of polymers:

Improving adhesion, printing and biocompatibility




Non-equilibrium Flows during Earth Atmospheric Reentry

Plasma Torch Facility at Ecole Centrale Paris

Nozzle
(5 cm diameter)

Quartz Tube

Power and <,
Cooling Water

RF Coil

Gas Injectors —

Earth reentry occurs at hypersonic velocities: 5-20 km.s!

Radiative fluxes from the shock-produced plasma account for up to 50% of the total heat encountered by a
spacecraft duri ng reentry MacDonald et al, J. Thermophys. Heat Trans 29.1 (2015)

The plasma generated is under non-equilibrium conditions (strong dissociation occurs)
Designing effective thermal protective systems (TPS) require accurate quantification of these radiative fluxes

Experiments performed in ground facilities use plasmatorches and arc jet plasmas




Summary

« LT plasmas are everywhere around us

« They enable many of our modern technologies

« LT plasma physics a multidisciplinary field

« Their high non-equilibrium feature provides an almost infinite richness

« LT plasmas are relatively easy to generate in the lab. This leads to the research field being exciting
and fast-paced

« Ongoing work involves theory, modeling, computational and experimental efforts

« Comejoin us!
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