Physics of Low Temperature/Non-Equilibrium Plasmas

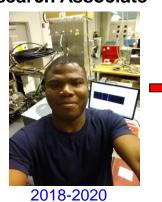
Marien Simeni Simeni: msimenis@umn.edu

Department of Mechanical Engineering, University of Minnesota

June 14th 2023, SULI Introduction to Fusion Energy and Plasma Physics Course

About me

Yaoundé, Cameroon: Up to end of high school France (Troyes and Paris): Undergrad and Grad Studies


Up to 2006

THE Ohio State University: Postdoc

2015-2018

University of Minnesota: Research Associate

2006-2015

PPPL: Associate Research
Physicist

The Laboratory for Plasma Soft X-Ray Light Sources and Diagnostics (1)

- Development of ultrafast coherent (laser-based) spectroscopic diagnostics of plasmas and high speed flows
- Development and characterization of plasma-based soft x-ray extreme ultraviolet lithography light sources

Marien Simeni

EUV Lithography

Tasnim Akbar Faruquee

Grayson LaCombe

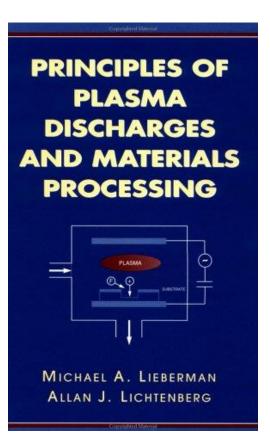
Dr. Jianan Wang

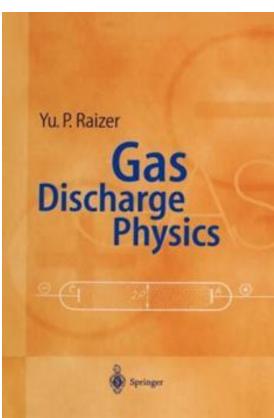
EUV Lithography/ Ultrafast coherent diagnostics

EUV Lithography

Ultrafast coherent diagnostics

P.I.


The Laboratory for Plasma Soft X-Ray Light Sources and Diagnostics (2)



Some Good References

OPEN ACCESS

IOP Publishing Journal of Physics D: Applied Physics

Roadmap

J. Phys. D: Appl. Phys. 55 (2022) 373001 (55pp)

The 2022 Plasma Roadmap: low temperature plasma science and technology

```
I Adamovich<sup>1</sup>, S Agarwal<sup>2</sup>, E Ahedo<sup>3</sup>, L L Alves<sup>4</sup>, S Baalrud<sup>5</sup>, N Babaeva<sup>6</sup>, A Bogaerts<sup>5</sup>, A Bourdon<sup>8</sup>, P J Bruggeman<sup>9</sup>, C Canal<sup>10</sup>, E H Choi<sup>11</sup>, S Coulombe<sup>12</sup>, Z Donko<sup>13</sup>, D B Graves<sup>14,15</sup>, S Hamaguchi<sup>16</sup>, D Hegemann<sup>17</sup>, M Hori<sup>18</sup>, H-H Kim<sup>19</sup>, G M W Kroesen<sup>29</sup>, M J Kushner<sup>21</sup>, A Laricchiuta<sup>22</sup>, X Li<sup>23</sup>, T E Magin<sup>24</sup>, S Mededovic Thagard<sup>25</sup>, V Miller<sup>26</sup>, A B Murphy<sup>27</sup>, G S Oehrlein<sup>28</sup>, N Puac<sup>29</sup>, R M Sankaran<sup>29</sup>, S Samukawa<sup>31</sup>, M Shiratani<sup>32</sup>, M Simek<sup>33</sup>, N Tarasenko<sup>34</sup>, K Terashima<sup>35</sup>, E Thomas Jr<sup>36</sup>, J Trieschmann<sup>37</sup>, S Tsikata<sup>38</sup>, M M Turner<sup>39</sup>, I J van der Walt<sup>40</sup>, M C M van de Sanden<sup>20,41</sup> and T von Woedtke<sup>42,43</sup>
```

IOP Publishing
Plasma Sources Sci. Technol. 26 (2017) 123002 (17pp)

Plasma Sources Science and Technology https://doi.org/10.1088/1361-6595/aa97al

https://doi.org/10.1088/1361-6463/ac5e1c

Topical Review

Foundations of atmospheric pressure nonequilibrium plasmas

Peter J Bruggeman 10, Felipe Iza 20 and Ronny Brandenburg 30

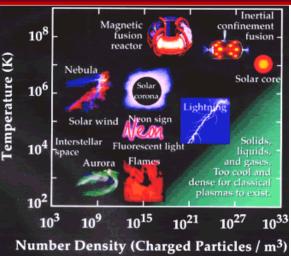
¹University of Minnesota, Department of Mechanical Engineering, 111 Church Street SE, Minneapolis, MN 55455. United States of America

² Wolfson School of Mechanical, Electrical and Manufacturing Engineering, Loughborough University, Loughborough LE11 3TU, United Kingdom

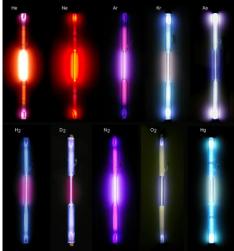
³ Leibniz Institute for Plasma Science and Technology (INP Greifswald), Felix-Hausdorff-Strasse 2, D-17489 Greifswald, Germany

Outline

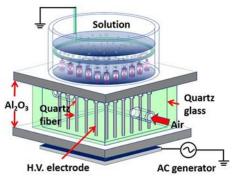
- ✓ Low Temperature Plasmas and Applications
- ✓ Generation of Low Temperature Plasmas and Basic Properties
- ✓ Energy Partition and Transfer in Low Temperature Plasmas
- ✓ Case Study #1: Plasma-Assisted Ignition
- ✓ Case Study #2: Inactivation of Viruses and Bacteria
- ✓ Case Study #3: Polymer Etching
- ✓ Extra: Atmospheric Reentry
- ✓ Conclusion

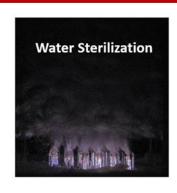


Low Temperature Plasmas and Applications


Nasmas?

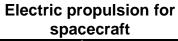
- Ionized gases
- 4th state of matter
- 99.9% of the visible universe
- Made of neutral particles, free electrons, ions, electric fields, photons
- Span over several orders of magnitude of densities and temperatures

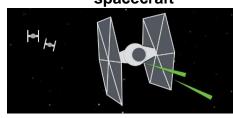

Current Grand Challenges of Engineering


US Academy of Engineering

Make solar energy economical

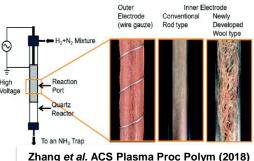
Provide access to clean water





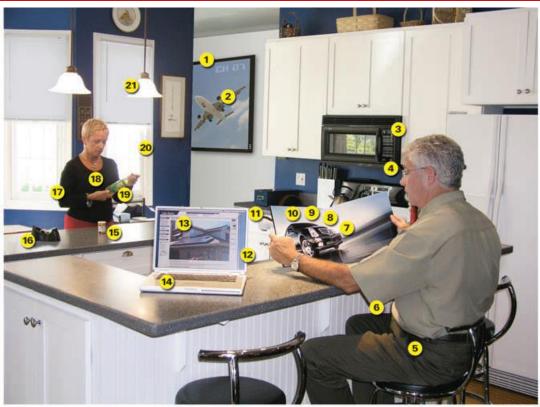
Provide energy from fusion Spherical Tokamak at PPPL

- Manage the nitrogen cycle
- Engineer the tools for scientific discovery
- Improve CO₂ sequestration



Star Wars twin ion engine fighters

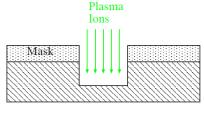
Aihara et al. ChemComm(2016)


Plasma-assisted ammonia synthesis

Linang et al. ACS Plasma Proc Polym (20)

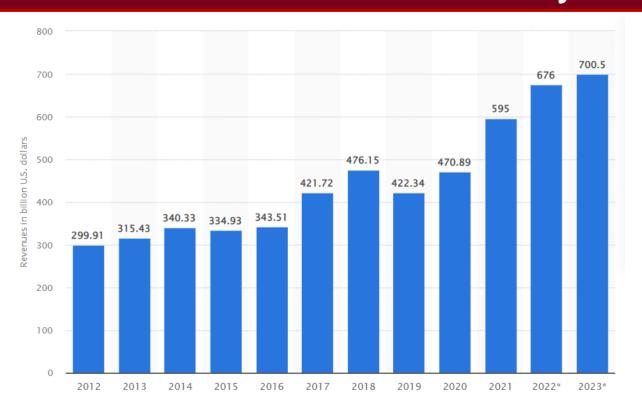
LT Plasmas Impact our Every-day Life

Plasma Science: Advancing Knowledge in the National Interest, National Research Council (US, 2007)


- 01 Plasma TV
- 02 Plasma-coated jet turbine blades
- 03 Plasma-manufactured LEDs in panel
- 04 Diamond-like plasma CVD eyeglass coating
- 05 Plasma ion-implanted artificial hip
- 06 Plasma laser-cut cloth
- 07 Plasma HID headlamps
- 08 Plasma-produced H₂ in fuel cell
- 09 Plasma-aided combustion
- 10 Plasma muffler
- 11 Plasma ozone water purification
- 12 Plasma-deposited LCD screen
- 13 Plasma-deposited silicon for solar cells
- 14 Plasma-processed microelectronic
- 15 Plasma-sterilization in pharmaceutical production
- 16 Plasma-treated polymers
- 17 Plasma-treated textiles
- 18 Plasma-treated heart stent
- 19 Plasma-deposited diffusion barriers for containers
- 20 Plasma-sputtered window glazing
- 21 Compact fluorescent plasma lamp

The Semiconductor Success Story

Anisotropic Plasma Etching


Trench Depth = 5.6um

 $E/R = 1.9 \mu m/min$

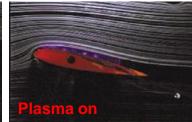
Trench Depth = 26um $E/R = 3.2 \mu m/min.$

Trench Depth = 31µm $E/R = 3.9 \mu m/min.$

Wu et al, J. Appl. Phys. 108, 051101 (2010)

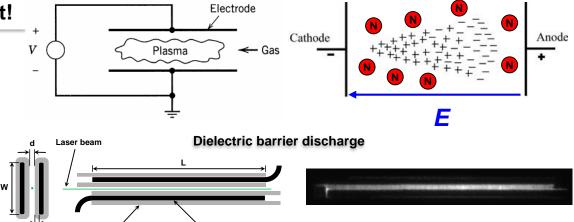
Plasmas and Applications: Thermal VS Non-Thermal

REFORMING



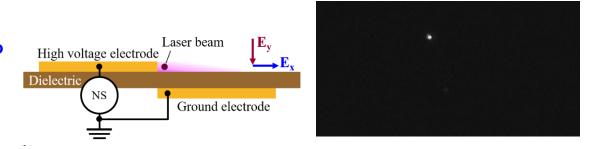
Non-thermal plasmas: $T_q \ll T_e (10, 000 \text{ K})$

Generation of LT Plasmas and Basic Properties

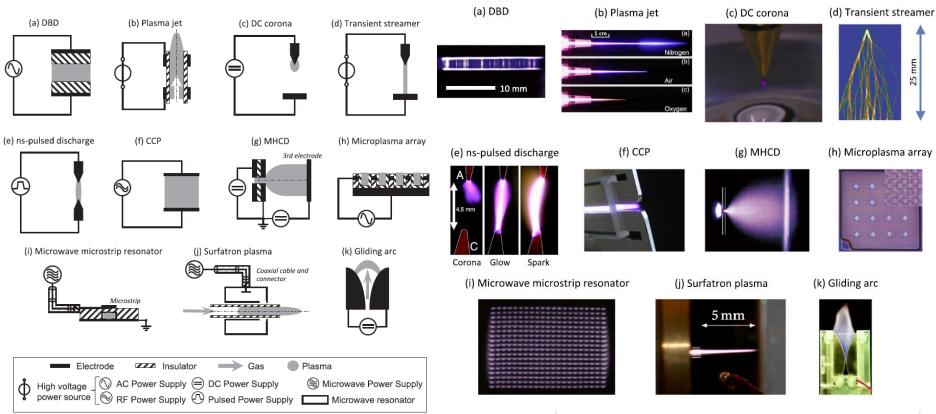


Gas Discharges as Low Temperature Plasmas

Quartz sleeve

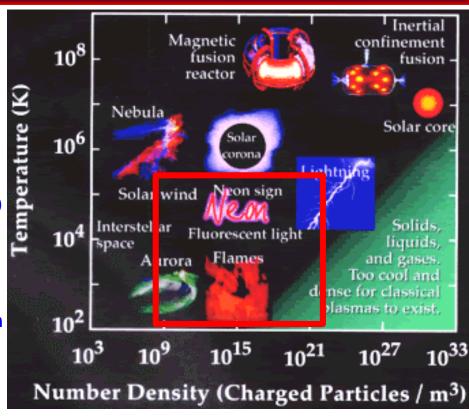

We use electric fields instead of heat!

- Electrically driven
- Different excitation sources can be employed: DC, AC, RF, Microwave, nanosecond pulsed,...
- The source of energy is the E-field
- High E-fields lead to ionizing collisions
- Charged particles collisions with neutrals cause the main energy transfer from the electric field energy to the gas
- When the energy transfer of electrons to neutral particles is not very fast, the energy of electrons (=T_e) can be significant larger than the neutral particles energy (=T_a): T_a << T_e


Surface dielectric barrier discharge

Stainless steel electrode

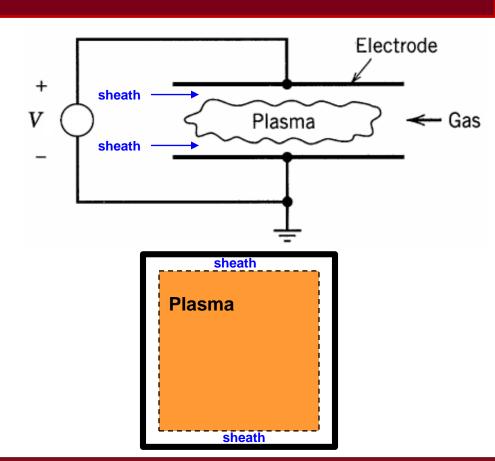
Overview of Atmospheric Pressure LT Plasmas



Bruggeman et al, Plasma Sources Sci. Technol. 26 (2017) 123002

LT Plasmas are Rich of Physics and Chemistry

- Span over 12 orders of magnitude for n_e
- Often low ionization fraction (degree): $\frac{n_e}{N} < 1\%$
- Ions and neutrals temperatures are near room temperature: $T_i \sim T_g \sim \frac{1}{40} \, eV$
- Electron temperature can reach several eV: $T_{\rm e} \sim$ 1-10 eV
 - 1 eV ≈ 11,606K
- Highly non-equilibrium
- Highly reactive plasmas can be generated near room gas temperatures
- In presence of molecular gases, dissociation can occur generating a very rich and complex electronsdriven chemistry: LT plasma = chemical processor



Plasma Interactions with Surfaces: Formation of Sheaths

Plasma are surrounded by Sheaths!

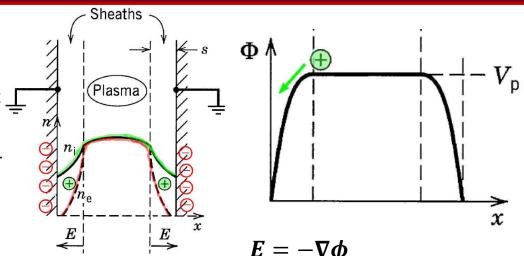
- The sheath is the boundary layer between a plasma and a solid surface (electrodes, substrate, container walls, ...)
- It acts to balance electron and ion currents lost from a plasma
- Sheaths are characterized by a strong E-field, low electron density
- Sheaths form as ions are accelerated into surfaces
- Sheaths have an important role for applications relevant to: removal of surface material and ion implantation

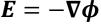
Sheaths size depends on the plasma density (pressure)

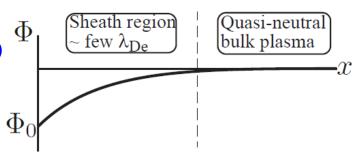
The Debye length is the characteristic length scale of a plasma

 It's the distance scale over which significant charge densities can spontaneously exist

Using Poisson's equation:

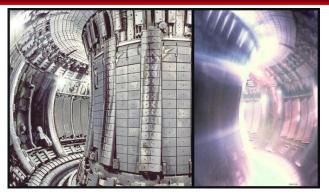

$$\phi = \phi_0 e^{-|x|/\lambda_{De}}$$


$$\lambda_{De} = \left(\frac{\varepsilon_0 T_e}{e n_e}\right)^{\frac{1}{2}}$$


$$\lambda_{De}(cm) = 740 \sqrt{T_e/n_e}$$
 T_e in eV and n_e in cm⁻³

- For $T_e = 4$ eV and $n_e = 10^{10}$ cm⁻³, $\lambda_{De} \sim 148$ µm (quite small!)
- Sheath thickness I_s provided by Child-Langmuir sheath model:

$$\frac{l_s}{\lambda_{De}} = \frac{\sqrt{2}}{3} \left(\frac{2e\Delta\phi}{T_e} \right)^{3/4}$$



Comparison between Hot and Cold Plasmas

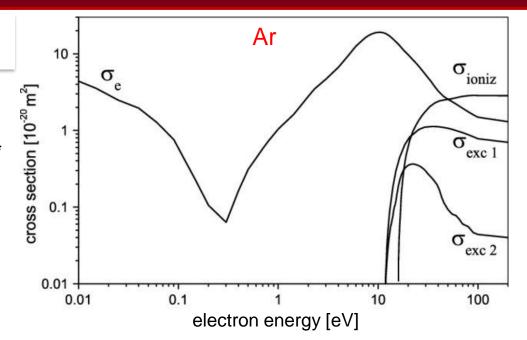
EFDA JET: Joint European Torus

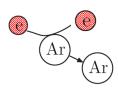
	JET Tokamak	Atmospheric pressure plasmas
Power	~16 MW	10 ⁻² – 10 W
Volume	~ 100 m ³	~ 10 ⁻⁸ m ³ (10 mm ³)
Power density	10 ⁶ W m ⁻³	10 ⁶ -10 ⁹ Wm ⁻³
Ionization degree	FULL	10 ⁻⁵ – 10 ⁻²
Temperature	$T_{\rm e} = T_{\rm g} = 10^8 {\rm K}$	$T_e = 10^3 - 10^4 \text{ K}$ $T_g = 300 - 3000 \text{ K}$
Pulse duration	~1 s	~ 10 ns up to DC

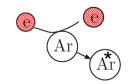
Courtesy of Peter Bruggeman, University of Minnesota

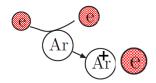
Energy Partition and Transfer in LT Plasmas

Collisions and Elementary Reactions: Atomic Gas

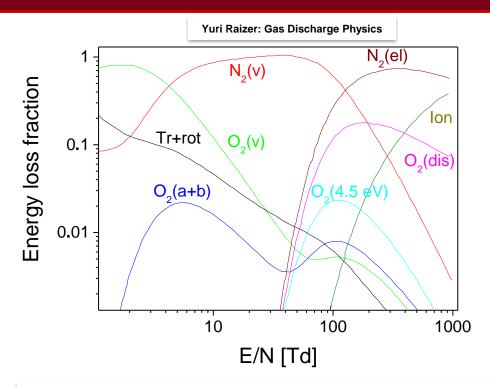

We use cross sections to quantify the probability that a process may occur


- Elastic collisions: e⁻ + Ar → Ar + e⁻
- Electronic excitation collisions: e⁻ + Ar → Ar*
 + e⁻ → Ar + e⁻ + photons
- lonizing collisions: e⁻ + Ar → Ar⁺ + e⁻ + e⁻
- Cross sections from different databases are compiled on the LXCAT website:


https://us.lxcat.net/



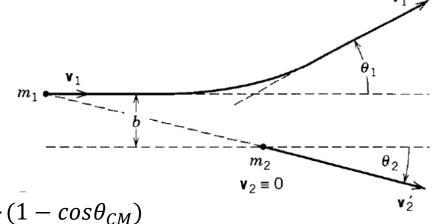
1 eV ~ 1.6 × 10⁻¹⁹ J



Energy Partition in a Molecular Gas: Air

Where does the energy from the electrons go?

- E/N, electric field divided by total number density
- 1 Td (Townsend) = 10⁻¹⁷ V.cm²
- The rates of electron impact processes depend exponentially on E/N
- At low E/N values (< 10 Td): Energy coupled preferentially to vibrational excitation of O₂
- For 10 Td < E/N < 100 Td: Energy coupled preferentially to vibrational excitation of N₂
- For E/N > 100 Td: Energy coupled into electronic excitation of N₂, O₂ dissociation and ionization


High E/N values result in high reactivity and rapid electrondriven processes. This is for instance achieved using nanosecond pulsed discharges

Energy Transfer in an Elastic Collision (1)

• Expressing energy and momentum balances yields:

W_L = final energy for particle m₂ W= initial energy for particle m₁

$$\frac{W_L}{W} = \zeta_L = \frac{4m_1m_2}{(m_1 + m_2)^2}\cos^2\theta_2 = \frac{2m_1m_2}{(m_1 + m_2)^2}(1 - \cos\theta_{CM})$$

$$\theta_2 = \frac{\pi}{2} - \frac{\theta_{CM}}{2}$$

CM = Center of Mass (given)

What is now the average energy transfer per collision?

Energy Transfer in an Elastic Collision (2)

Fraction of energy transferred in one collision:

For electron – neutral collision (hard sphere model)

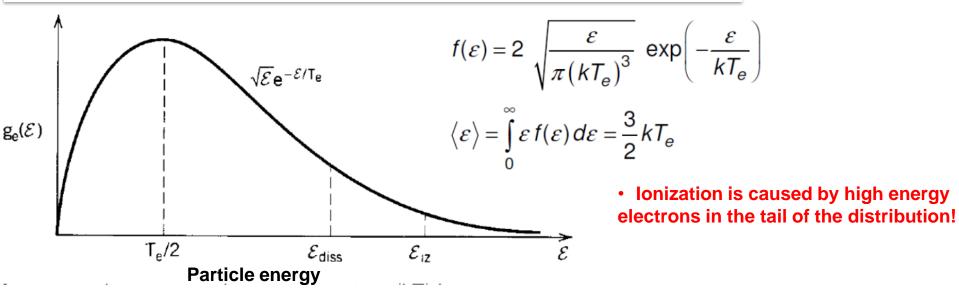
$$\frac{2m_1m_2}{(m_1+m_2)^2} \approx \frac{2m_e}{M} \approx 10^{-4}$$

Electrons transfer little energy in elastic collisions with neutrals: $T_e \gg T_g$

For ion – neutral collision (with same mass)

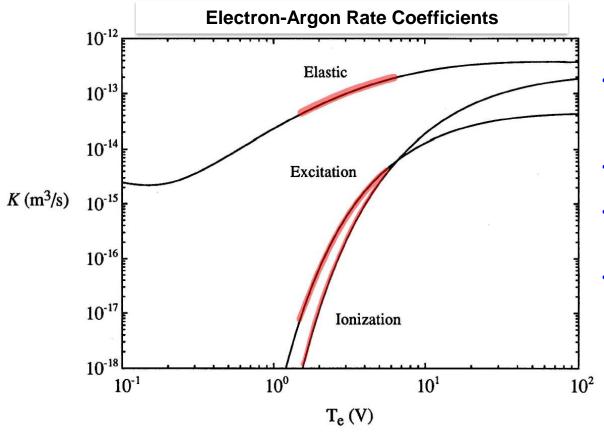
$$\frac{2m_1m_2}{(m_1+m_2)^2} = \frac{1}{2}$$

Equilibration rates depend on the mass ratios


lons neutral collisions transfer significant energy in elastic collisions: $T_{ion} \sim T_g$

What does Temperature mean?

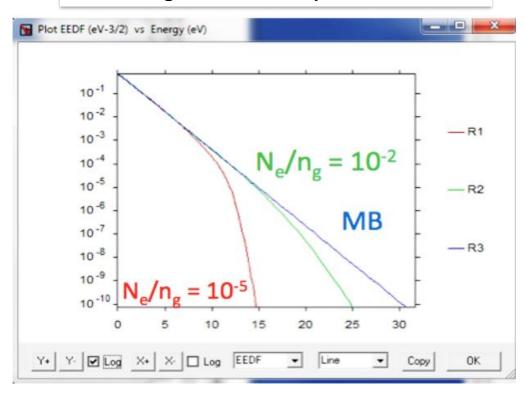
Temperature is actually related to the mean kinetic energy!


Concept of thermal equilibrium in statistical mechanics: Maxwell-Boltzmann distribution function of the particle energy

 An electron temperature (T_e) of 1 eV therefore means that the plasma has an electron energy distribution function (EEDF) with a mean energy of 3/2 eV

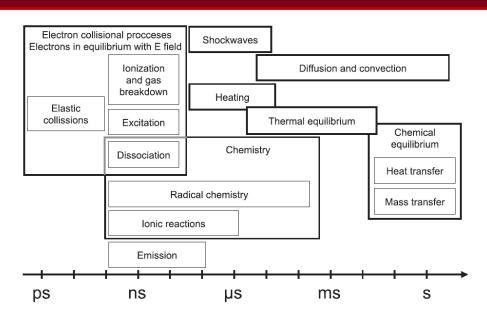
Rate Coefficients

- Rate coefficient is the average of the cross section σ (V_R) of the process over the Maxwellian distribution
- $K(T_e) = \langle \sigma V_R \rangle_{Maxwellian}$
- V_R = relative velocity of colliding particles
- The knowledge of rate coefficients is indispensable for establishing accurate collisional-radiative models of plasmas

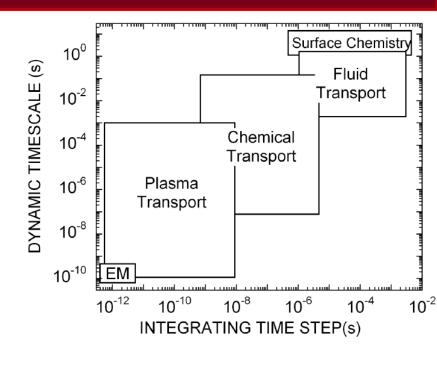


Deviation from Maxwell-Boltzmann Distribution

The EEDF is not necessarily Maxwell-Boltzmann!


- It depends on the ionization degree
- Assuming M-B when it is not can hugely impact rates with high threshold energy
- Plasma codes have a Boltzmann solver (EEDF can depend on gas composition)

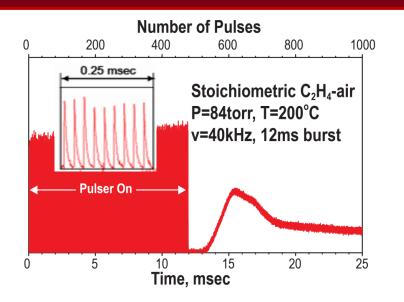
Bolsig+: Boltzmann equation solver

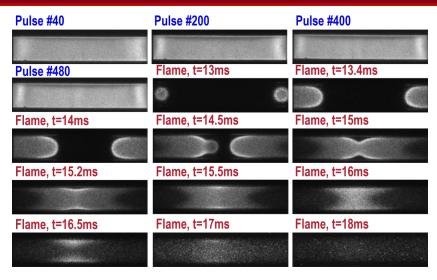


LT Plasmas Modeling and Timescales

- About 12 orders of magnitude in timescales
- Integrating time step (stability, accuracy): Δt
- Dynamic timescale (to resolve the evolution of plasma phenomena): ΔT

Mark J. Kushner, University of Michigan


Bruggeman et al, Plasma Sources Sci. Technol. 26 (2017) 123002



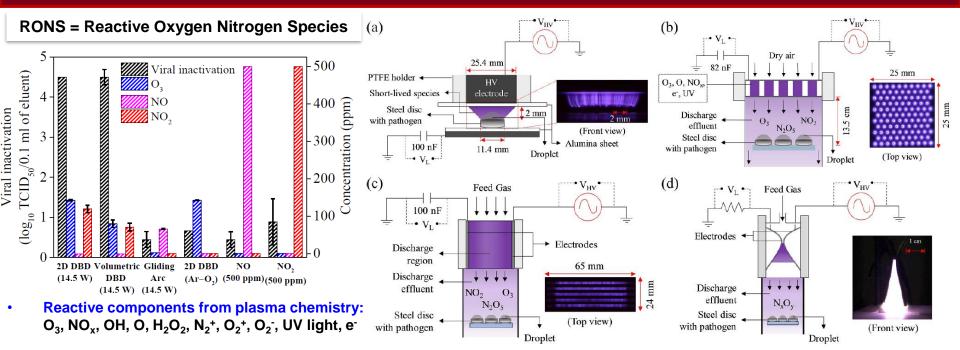
Case Study #1: Plasma-Assisted Ignition

C₂H₄ Ignition below Autoignition Temperature

OH emission from plasma and flame

- Ignition induced by radicals generated in the plasma (primarily O and H atoms)
- Ignition occurs at temperature ≈ 200 K below autoignition
- Ignition begins near edges of the plasma (higher energy loading)

Flame propagates to the center of the plasma


Yin et al, IEEE Trans Plasma Sci. 2011

Case Study #2: Inactivation of Viruses and Bacteria

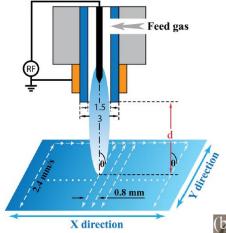
RONS from Air Plasmas for Virus Inactivation

FCV = Feline CaliciVirus (surrogate of human norovirus = stomach flu)

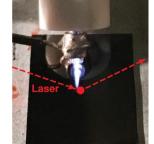
 Strong correlations between generation of gas phase N₂O₅ and inactivation

Comparison of surface decontamination

efficiency of 4 different plasmas


Case Study #3: Polymer Etching

Etching from O, H, OH Produced by a RF Plasma Jet

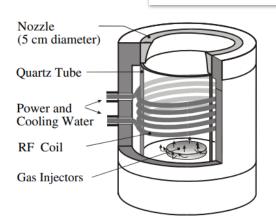

- Etching of polystyrene, PMMA (poly methyl methacrylate) and PVA (poly vinyl alcohol)
- Ar+1% O₂, Ar+1% air, Ar +1%
 H₂O plasma jets
- Correlation between O flux at the surface and polymer etching rate
- Etching probability of polystyrene by OH at least one order of magnitude greater than etching of polystyrene by O radicals

Using plasma to modify surface properties of polymers: Improving adhesion, printing and biocompatibility

TABLE VI. Obtained etching probability (γ) for different surface loss coefficients (β) .

Species	β	γ
O.	10^{-4}	$(1.9 \pm 0.1) \times 10^{-5}$
	10^{-3}	$(3.2 \pm 0.2) \times 10^{-5}$
	10^{-2}	$(1.4 \pm 0.2) \times 10^{-4}$
H.	10^{-5}	$< 8.3 \times 10^{-6}$
	10^{-3}	$<1.8 \times 10^{-5}$
ЮН	10^{-3}	$(2.8 \pm 0.1) \times 10^{-3}$
	10^{-2}	$(5.750 \pm 0.001) \times 10^{-3}$
	10^{-1}	$(3.5 \pm 0.1) \times 10^{-2}$

Luan et al, J. Phys. D: Appl. Phys. 50 (2017) 03LT02


Kondeti et al, J. Vac. Sci. Technol. A 38(3)

Non-equilibrium Flows during Earth Atmospheric Reentry

Plasma Torch Facility at Ecole Centrale Paris

- Earth reentry occurs at hypersonic velocities: 5-20 km.s⁻¹
- The plasma generated is under non-equilibrium conditions (strong dissociation occurs)
- Designing effective thermal protective systems (TPS) require accurate quantification of these radiative fluxes
- Experiments performed in ground facilities use plasma torches and arc jet plasmas

Summary

- LT plasmas are everywhere around us
- They enable many of our modern technologies
- LT plasma physics a multidisciplinary field
- Their high non-equilibrium feature provides an almost infinite richness
- LT plasmas are relatively easy to generate in the lab. This leads to the research field being exciting and fast-paced
- Ongoing work involves theory, modeling, computational and experimental efforts
- Come join us!

University of Minnesota

Driven to Discover®

Crookston Duluth Morris Rochester Twin Cities

The University of Minnesota is an equal opportunity educator and employer.